Relaxed parametric design with probabilistic constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Low-Parametric-Sensitivity Realizations With Relaxed L2-Dynamic-Range-Scaling Constraints

—This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is convert...

متن کامل

Automatic Phoneme Segmentation with Relaxed Textual Constraints

Speech synthesis by unit selection requires the segmentation of a large single speaker high quality recording. Automatic speech recognition techniques, e.g. Hidden Markov Models (HMM), can be optimised for maximum segmentation accuracy. This paper presents the results of tuning such a phoneme segmentation system. Firstly, using no text transcription, the design of an HMM phoneme recogniser is o...

متن کامل

support vector regression with random output variable and probabilistic constraints

support vector regression (svr) solves regression problems based on the concept of support vector machine (svm). in this paper, a new model of svr with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Relaxed constraints support vector machine

This paper presents a newmodel of support vector machines (SVMs) that handle data with tolerance and uncertainty. The constraints of the SVM are converted to fuzzy inequality. Giving more relaxation to the constraints allows us to consider an importance degree for each training samples in the constraints of the SVM. The new method is called relaxed constraints support vector machines (RSVMs). A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer-Aided Design

سال: 1994

ISSN: 0010-4485

DOI: 10.1016/0010-4485(94)90065-5