Relaxed parametric design with probabilistic constraints
نویسندگان
چکیده
منابع مشابه
Support vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملLow-Parametric-Sensitivity Realizations With Relaxed L2-Dynamic-Range-Scaling Constraints
—This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is convert...
متن کاملAutomatic Phoneme Segmentation with Relaxed Textual Constraints
Speech synthesis by unit selection requires the segmentation of a large single speaker high quality recording. Automatic speech recognition techniques, e.g. Hidden Markov Models (HMM), can be optimised for maximum segmentation accuracy. This paper presents the results of tuning such a phoneme segmentation system. Firstly, using no text transcription, the design of an HMM phoneme recogniser is o...
متن کاملsupport vector regression with random output variable and probabilistic constraints
support vector regression (svr) solves regression problems based on the concept of support vector machine (svm). in this paper, a new model of svr with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملRelaxed constraints support vector machine
This paper presents a newmodel of support vector machines (SVMs) that handle data with tolerance and uncertainty. The constraints of the SVM are converted to fuzzy inequality. Giving more relaxation to the constraints allows us to consider an importance degree for each training samples in the constraints of the SVM. The new method is called relaxed constraints support vector machines (RSVMs). A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer-Aided Design
سال: 1994
ISSN: 0010-4485
DOI: 10.1016/0010-4485(94)90065-5